11.7 MAXIMUM AND MINIMUM VALUES

EXAMPLE A Find and classify the critical points of the function

$$
f(x, y)=10 x^{2} y-5 x^{2}-4 y^{2}-x^{4}-2 y^{4}
$$

Also find the highest point on the graph of f.
SOLUTION The first-order partial derivatives are

$$
f_{x}=20 x y-10 x-4 x^{3} \quad f_{y}=10 x^{2}-8 y-8 y^{3}
$$

So to find the critical points we need to solve the equations
I

$$
\begin{array}{r}
2 x\left(10 y-5-2 x^{2}\right)=0 \\
5 x^{2}-4 y-4 y^{3}=0
\end{array}
$$

2

From Equation 1 we see that either

$$
x=0 \quad \text { or } \quad 10 y-5-2 x^{2}=0
$$

In the first case $(x=0)$, Equation 2 becomes $-4 y\left(1+y^{2}\right)=0$, so $y=0$ and we have the critical point $(0,0)$.

In the second case $\left(10 y-5-2 x^{2}=0\right)$, we get
3

$$
x^{2}=5 y-2.5
$$

and, putting this in Equation 2, we have $25 y-12.5-4 y-4 y^{3}=0$. So we have to solve the cubic equation

4

$$
4 y^{3}-21 y+12.5=0
$$

Using a graphing calculator or computer to graph the function

$$
g(y)=4 y^{3}-21 y+12.5
$$

as in Figure 1, we see that Equation 4 has three real roots. By zooming in, we can find the roots to four decimal places:

$$
y \approx-2.5452 \quad y \approx 0.6468 \quad y \approx 1.8984
$$

(Alternatively, we could have used Newton's method or a rootfinder to locate these roots.) From Equation 3, the corresponding x-values are given by

$$
x= \pm \sqrt{5 y-2.5}
$$

If $y \approx-2.5452$, then x has no corresponding real values. If $y \approx 0.6468$, then $x \approx \pm 0.8567$. If $y \approx 1.8984$, then $x \approx \pm 2.6442$. So we have a total of five critical points, which are analyzed in the following chart. All quantities are rounded to two decimal places.

Critical point	Value of f	$f_{x x}$	D	Conclusion
$(0,0)$	0.00	-10.00	80.00	local maximum
$(\pm 2.64,1.90)$	8.50	-55.93	2488.72	local maximum
$(\pm 0.86,0.65)$	-1.48	-5.87	-187.64	saddle point

Visual II. 7 shows several families of surfaces. The surface in Figures 2 and 3 is a member of one of these families.

Figures 2 and 3 give two views of the graph of f and we see that the surface opens downward. [This can also be seen from the expression for $f(x, y)$: The dominant terms are $-x^{4}-2 y^{4}$ when $|x|$ and $|y|$ are large.] Comparing the values of f at its local maximum points, we see that the absolute maximum value of f is $f(\pm 2.64,1.90) \approx 8.50$. In other words, the highest points on the graph of f are ($\pm 2.64,1.90,8.50)$.

FIGURE 2

FIGURE 3

